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ABSTRACT

This study was motivated by the recent upsurge of interest in ion
propulsion devices wherein thrust is obtained by accelerating ions out
of the plasma of a dc discharge. In order to be able to understand and
thus improve the operation of these devices it is necessary to be able
to analyze and solve complicated one-and two-dimensional dc discharge
problems.

In this work it is shown that a pressure theory approach, although
approximate, when modified to take into account ion generation can be
used to accurately describe a wide variety of dec discharges in the low-
and medium-pressure regimes. This modified pressure theory or fluid
approach makes use of the '"moment method" of solution of the Boltzmann
equation to obtain differential equations which describe low pressure
discharges in terms of measurable macroscopic parameters.

Solutions are found for the parameters of the discharges in one-
dimensional planar, cylindrical, and coaxial geometries for various
generation rates and including both the effects of ion-neutral collisions
and an applied magnetic field. The results for the one-dimensional
collisionless cases are compared with the more exact formulation of
Langmuir and found to be in good agreement.

In the limit of a small inner conductor, the one-dimensional coaxial
solutions are shown to be useful in determining the properties of cylin-
drical Langmuir probes in the ion collection regime. The results are
compared to present collisionless probe theories and found to be in good
agreement. The one-dimensional coaxial solutions are then extended to
include the effects of collisions and an applied magnetic field on the
characteristics of a cylindrical probe.

For the most important case of ion generation proportional to
electron density, two-dimensional solutions for the parameters of the
discharges in a rectangular box, a finite length cylinder, and between

finite length concentric coaxial cylinders are found for the first time.
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Calculated parameters for both the one- and two-dimensional dis- '’
charges are presented graphically for a number of representative cases
and the equations are tabulated and summarized in such a way as to be
easlly applied to other cases.

The theory is also used to describe the behavior of two experi-
mental devices: the so-called oscillating-electron ion source and the
Kaufman ion source. Only qualitative agreement between experiment and
theory is obtained when the two-dimensional theory is used to approxi-
mate the behavior of the oscillating-electron ion source. However, a
one~dimensional theory which includes both primary or beam electrons
and secondary or Maxwellian electrons is found to give good agreement

between theory and experiment for the Kaufman ion source.
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CHAPTER I

INTRODUCTION AND HISTORICAL BACKGROUND

In this work it is shown that a pressure theory, modified to take
into account generation, can be used to describe one- and two-dimensional
steady state discharges in the low pressure (collisionless) and medium
pressure regimes where the collision dominated or diffusion theory is no
longer applicable. For the first time, solutions are found for the
discharges in a two-dimensional rectangular box, a two-dimensional finite
length cylinder, and both one- and two-dimensional coaxial geometries.
The effects of ion neutral collisions and a uniform magnetic field are
also included in the analysis of each of the above cases. In the limit
of a small inner conductor, the one-dimensional coaxial solutions are
found to be useful in determining the properties of cylindrical Langmuir
probes thus making possible, for a first time, a gquantitative study of
the effects of a magnetic field and collisions on probe characteristics
in the ion collection regime.

Using this pressure theory or Eulerian approach two different
experimental discharges are analyzed and the results compared with
experimental measurements, the first device being a so-called oscillating-

2,3

electron ion source and the second, an idealized model of the Kaufman
ion source.u Reasonably good correlation between theory and experiment
is obtained.

This study was motivated by the recent upsurge of interest in ion
propulsion devices wherein thrust is obtained by accelerating ions out

3)5}6

Considerable experimental work has

-9

of the plasma of a dc discharge.
been done on the Kaufman type of ion thrustor, but in order to be able
to fully understand, analyze, and improve the operation of this device

it is necessary to be able to solve rather complicated one- and two-
dimensional dc discharge problems. Although this study is generally
directed toward analyzing discharges employing heavy ions which could

be used for ion propulsion, the results are presented in such a way as

-1 -



to be meaningful and useful for the study of a broad range of low and
medium pressure, steady-state discharge problems which heretofore were
very difficult, if not impossible, to formulate and solve.

The foundation for nearly all the later theoretical work on low
pressure discharges was established in a classic paper by Tonks and

Langmuir in 1929010 They developed a colligionless theory involving a

rather complicated integral equation which they then used to solve
several simple one-dimensional problems. This theory was verified by
and used to explain a large number of experiments by Langmuir and his
co-workers which extended over a period of some fifteen years.ll The
early theoretical work was later verified and extended by, among others,
S. A. Self in a series of papers starting in 1962,12—1M Harrison and
Thompson in 1959,15 and Caruso and Cavaliere in 1962.16
In the intervening years between the theoretical work of Langmuir
and Self a great many experiments were carried out on various aspects
of the low-pressure discharge. As examples of this type of work we cite

17 18

the excellent experiments of Klarfeld in 1938 and Bickerton and Fngle
in 1955. Almost without exception, any theory accompanying these experi-
ments is based upon the collisionless theory developed by Langmuir,lo
Unfortunately, as mentioned above, the formulation developed by Langmuir
leads to a complicated integral equation which cannot be easily extended
to include the intermediate region between the free-fall and collision
dominated cases or to two-dimensional problems. Indeed, it is not at

all evident that an extension of langmuir's exact formulation to these
problems can be made. Thus, it becomes necessary to look for an approach
which does not have the limitations of Langmuir's formulation. We have
found that a fluid or macroscopic approach, although approximate when
modified for the low pressure regime, gives meaningful results for the
parameters of low-pressure discharges. This pressure theory approach
which leads to differential equations rather than the more complicated
integral equation formulation of Langmuir is somewhat similar to that

of Persson.19’20

However, several important extensions of and departures
from his approach have been made: In solving the collisionless one-

dimensional problems we have included the pressure term and the third
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moment equation which 1s known to be a more accurate approach; we have
solved the previously unsolved coaxial discharge which has useful
applications in the study of probe theory; the possibility of neutral
density variation has also been considered together with finite ion
temperatures at generation; we have successfully applied the theory to
two-dimensional discharges in rectangular, cylindrical, and coaxial
geometries including both collisions and a magnetic field; and finally
we have been able to extend the theory to include a three-component
plasma in which there are two types of electrons, primary beam elements
and the secondary Maxwellian distribution of electrons. This approximates
the behavior of the Kaufman type ion source.

The development in the following chapters proceeds in the logical
manner of increasing complexity: First, we give a discussion of the
method of solution and assumptions which define the dc discharge model.
Next, we proceed to a solution of some simple one-dimensional planar
and cylindrical discharges which are used to verify the validity of the
theory. Then we give a rather complete discussion of the heretofore unsolved
one-dimensional coaxial discharge. Next, we discuss the more complicated
two-dimensional cases. We then discuss the more difficult numerical
solution of the general dc discharge problem. Finally, we present the
application and correlation of the theory to two experimental devices.

A more detailed discussion of the contents of the various chapters follows
below.

In Chapter II, the general low pressure discharge problem is formulated
in terms of the fluid or Eulerian approach by solving the Boltzmann-
Vlasov equation using the "moment method" of solution to generate macro-
scopic equations of motion. This formulation leads to particularly useful
solutions because the parameters in the equations are relatively easily
measured quantities. In this same chapter, the limitations of the theory
and the assumptions made to simplify the problem are discussed in detail.

In Chapter III, using the theory developed in Chapter II, one-
dimensional planar and cylindrical dc discharges are solved for various
generation rates. In order to demonstrate the validity of this approach,

the results are compared to those obtained by the more exact formulation

- 3 -



L .
of Langmuir and Self.lo’l Good agreement is obtained for the parameters

of interest throughout the discharge regions. Chapter III also contains
the results obtained for the parameters of the one-dimensional coaxial
discharge both with and without ion-neutral collisions and a magnetic
field. The results are presented graphically so that the effect of
collisions and a maghetic field can be easily studied for various
coaxial geometries.

Using the solutions of the one-dimensional coaxial discharge, the
ion current to a small cylindrical probe is calculated and found to
agree very closely with other collisionless probe theories. The guantita-
tive effect of ccllisions and a magnetic field on the ion density near
a probe are found for the first time for the intermedlate pressure regime
and a small magnetic field.

At the end of Chapter III tables summarizing all of the solutions
and equations for the one-dimensional discharge are presented with the
equations and expansions of parameters near the origin written in such
a way as to be easily programmed for computer solution of cases not
covered.

Chapter IV contains detailed results of the formulation and solution
of two-dimensional problems in rectangular, cylindrical and coaxial
geometry. Ag far as is known these results represent the first solutions
of this type of problem in the low and medium pressure regimes. The
effect of ion-neutral collisions is also included and for a somewhat
more restricted case an applied magnetic field is algo considered.

Again, the equations and solutions of the two-dimensional discharges
are summarized at the end of the chapter in such a way as to make easy
the computation of cases not covered in the body of the chapter.

Numerical procedures for solving more general discharge problems

are discussed in Chapter V. The considerable difficulties in formulating

and solving the discharge as a general boundary value problem are réviewed.

Two different numerical methods of solution are given which have been
used with some success to solve the general one-dimensional problem.
One of these methods is applied to the two-dimensional problem where a

solution is obtained for a limited range of parameters.

ST
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Although this work was intended to be mostly theoretical in nature,
the availability of a two-dimensional experimental device made it
attractive to compare the theoretical analysis with some experimental
data. Some qualitative agreement between experiment and theory was
obtained for a two dimensional oscillating-electron ion source.2 The
results of comparing this experiment with the theory are presented in
the first part of Chapter VI. Also included in Chapter VI is the
comparison of a theoretical analysis of an idealized one-dimensional
model of the Kaufman type ion source,LL with experimental results obtained
at the California Institute of Technology.8 This analysis further
demonstrates the versatility of the pressure theory approach in that
other components which may be in the plasma such as beam or primary
cathode electrons are easily included as a third component in the

analysis.



CHAPTER II

FORMULATION OF THE PROBLEM

We are concerned in this work with solving one-and two-dimensional
steady-state gaseous discharge problems. More particularly, we wish
to develop mathematical models which describe plasmas in the low and
medium pressure regimes where the collision dominated theory is no
longer applicatble.

In general, the low-pressure discharges which we will be discussing
in the following chapters are assumed to have the following characteristics:
Ions are generated throughout the discharge with low or zero initial
velocity and proceed toward the walls undergoing a number of collicsions
with neutral atoms, depending on the pressure. The potential has a
maximum at the center of the discharge and decreases monotonically
toward the walls. Recombination within the body of the plasma (volume
recombination) is neglected. Ionization occurs throughout the plasma
with a functional form dependent upon the type of discharge. Steady-
state conditions prevail throughout the plasma. The electrong are in
thermal equilibrium corresponding to a uniform temperature and have a
Boltzmann distribution of dencity for all cases except those with a
magnetic field.

In this chapter, the equations governing the behavior of steady-
state discharges are developed from a particular form of the Boltzmann
equation. This is followed by a detailled discussion of the assumptions

made in arriving at the final mathematical models.

A. THE BOLTZMANN-VIASOV EQUATION

The equation which we are going to use to describe the various
components (electrons, ions, neutrals) of the plasma is commonly called

the Boltzmann equation. More precisely, it is a combination of the

-6 -




Boltzmann equation and the Vlasov equation since it includes both
uncorrelated space charge forces and short range binary collisions.2
An excellent discussion of the derivation and limitations of both the
Vlasov and Boltzmann equations is given by Delcroix.21

For our purposes, it is convenient to write the Boltzmann-Vlasov

equation in the following form

g_f.: (—f:;"):t) + .‘77 g é% (-;;_V;)t) + —5 . %% (?;—‘:’:t) = g% (—f‘);’)t)> ’
C

(1)

where f(?,;,t) is the distribution function defined such that the

number density of a particular component is given by

]

n(r,t) =f £(r,w,t) aw (2)

-

W is the velocity, and 34 is the sum of the acceleration of the particles
due to external applied forces plus the acceleration dﬁe fo uncorrelated
space charge forces.

The term on the right-hand side of Eq. (1) represents in a non-
explicit way changes in the distribution function which are due to all
short range collisional processes such as elastic collisions, ionizing
collisions,recombination, and charge exchange. Much more will be said

about this particular term in the next two sections of this work.
B. SOLUTION OF THE BOLTZMANN-VIASOV EQUATION

There are two different commonly used methods of solving Eq. (1):
a perturbation technique, and the "moment method."” The first named
method is normally used when the solution is known to be near a given
distribution function. Since we are concerned with relatively rarified
plasmas where the distribution function for the ions and in some cases
the electrons is not known and may be quite different from any standard

distribution function, the perturbation technique of solution cannot be

- 7 -
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used and we must resort to the "moment method” of solution. Although
this method of solution is discussed in some detail by a number of v
authors,zz_zu the particular formulation which we need, including particle
generation, has not been developed fully heretofore. We therefore
discuss the "moment method" of solution in some detail.
In the most general "moment method" the Boltzmann equation is mulbi-
plied by a general function of velocity, position and time and then T
integrated over all velocity space. If we let A(?,%,t) be the general
function of velocity, position, and time; multiply Eq. (1) by A ; and

then integrate over all velocity space, we obtain the result

00

g—g (n{a)) - n@—i:) + v, - n@A) - @ - VA) - n@E - TA) = [o A (%f-) @,

c
(3) .
where the symbol ( ) means the average over all the velocities is to
be taken.
The mogt useful equations for our purposes are obtained by letting \"

A(¥,%,t) be increasingly higher integral powers of the velocity, W
When this approach is used we obtain what are commonly called the
transport equations or the macroscopic equations of motion. These
equations are useful in a practical way because, as we will see below,
they result in relationships between measurable, macroscopic quantities.
If we let A =1 , Eq. (3) becomes

BDLv- (W) = o, (1)

the well-known equation of continulty with a generation term, G

the right-hand side defined such that

, on

[re}

G =f (g—i)cd?q =fw(%};)gd§ , (5) ?

=00

where (Bffat)g is the change in the distribution function due to
generation (ionizing collisions), and where v = (w) , the average

macroscopic velocity.

-8 -
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We next let A = 3 and make the substitution

U is the random part of the velocity) to obtain

L=
%E (v) + a(v - W) + VY . (v) + Y ﬁ‘w -na = ‘jpﬁ (%%:) ™,
c

L x4
where V is the kinetic stress tensor defined by

© > >
v = Mn{uu) , (7)
and M is the mass of the component (ion, neutral, electron) under

consideration. In Eq. (7) the term WU is the product of two vectors,

a tensor. BEquation (6) is usually called the momentum transfer equation.

The next higher-order "moment equation," the heat transfer equation,

is obtained by setting A = (w - (W -V) . For this value of AG)
Eq. (3) becomes

3 > »\& @ > & >\T
SEHv o V+V v V+ v -+ (V- W)

o o o > o ]
+9 Q- @, X V- (wc x ¥)

I @-zxa-m<§) &, ®

-00

<
where Q is the heat or energy flux tensor defined by

bnd >
¢ = MmLuyL) (9)
© .
¥ * S is the scalar product of two tensors, and (V¥ - V%)T is the
transposed tensor of this scalar product. A good explanation of this
notation is given by Delcroix.23 In the derivation of the above

equation we have assumed that the only velocity dependent force is the



Lorentz force where

ELC = -I\%Ta : (10)

Equations (4), (6), and (8) describe the macroscopic behavior of a
plasma with one set of the three equations for each component of the
plasma. Provided the collision, generation, and acceleration terms are
known, Egs. (4), (6), and (8) give three equations in the four unknowns,
E?, n, v , and E§ . Thus, in order to form a closed set of equations,
it is necessary to generate one more equation. This is done by assuming
that V - 3’ is either equal to zero or given as a known function or
that ¥V - ¥ is given in Eq. (6) and then using Eqs. (4) and (6) to form
a closed get. In this work we usually assume that V - $?= O for the
ions. However, we shall so%&g some one-dimensional problems more

accurately by assuming V + Q@ =0 . More will be =zaid about these

assumptions in the next section.
C. ASSUMPTIONS DEFINING THE MODEL

In order to make the mathematics of the analysis tractable it is
necessary to make certain assumptions about the plasma of the discharges
which are to be analyzed. 1In this section each of the necessary
assumptions is discussed in detail and the limitations, if any, which a
particular assumption puts on the model are pointed out. Since we are
most interested in mercury discharges because of the possible application
to ion propulsion, some of the assumptions are evaluated in terms of the
low pressure mercury discharge.

1. Steady-state conditions are assumed to prevaill throughout the

plasma, thus we set B/Bt = 0 for all variables. As we shall see, in
the relatively low-pressure discharges which we are considering, this

does not mean that the electron and ion temperatures are egqual or that

the electrons and iong are in thermal equilibrium with each other.

2. Quasi-neutrality is assumed to exist throughout the discharge.

This means that we assume

n, ~ n = n , (11)




where n, is the total ion density and ng is the total electron
density. Such an assumption is equivalent to neglecting the left-hand
side of Poisson's equation. The validity of this assumption can only be
rigorously checked after the solution of a particular problem; that is,
only after the term V2¢ where @ is the potential can be evaluated

and compared to the difference

Iego' (nl = ne)l ’

It is well known that the assumption of quasi-neutrality breaks
down at the edge of the plasma where a sheath of a few debye lengths
thicknessz5 is formed. The sheath region has been analyzed by Self12
and by Caruso and Cavaliere.16 However, it will be seen in the next
chapter that even at edge of the plasma this assumption gives good
approximations to the ion current and most of the other parameters of
the discharge.

At this point we would like to emphasize that the general "moment
method" approach discussed in the preceding section is not dependent
upon the assumption of approximate charge neutrality. If one is willing

to use the complete Poisson eguation,

¥ = -2 (n, -n)
= ] ,
€ i e
as an added differential equation connecting the number densities and the
potential, then Egs. (4), (6), and (8) apply for any amount of charge
separation.
3. For all of the cases solved in the following chapters, with the

exception of those with an applied magnetic field, the electrons are

assumed to be in thermal equilibrium corresponding to a uniform temperature,

Te . The electron density is then given by the Boltzmann distribution

e /KT

- , (12)

n = n

where n is the electron density at the center of the discharge, ¢

e0
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is the potential relative to the center of the discharge, k is the
Boltzmann constant. and Te is the electron temperature.

Measurements by Langmuir in 1925, 1927, and 1928 of the electron
velocity distribution in the positive column26-28 seemed to indicate
that the electrons had a Maxwellian distribution even though electron-
neutral and electron-electron collisions were too rare to establish such
a steady-state distribution. These unexplainable results are called

29

"Langmuir's Paradox." Recently much more sophisticated measurements
by Vorob'eva, Kagan and their co-workers have confirmed that the electrons
in a typical low-pressure mercury discharge are indeed Maxwellian out
to at least 12 eV for pressgures below approximately 10 microns.30’31
There is still some controversy concerning the mechanism which
provides the electrons for the high energy "tail" of the distribution.
The latest and most comprehensive discussion and study of this problem
was made by Crawford and Self in 196M.32 Their explanation is that the
scattering of axially accelerated electrons is an adequate cource of the
high energy tail and they refer to recent experimental work by Ott33
in 1963 and Harp31+ in 1964, for verification of the condition that a dc
discharge can exist with an approximately Maxwellian electron distribution

without the existance of rf energy-scattering effects.

For discharges where an external magnetic field is applied, the
relation given by Eq. (12) can no longer be used and it is necessary to
use the macroscopic equations for the electrons as well as for the ions.

4. We assume the only short range elastic collisions of importance

are electron-neutral and ion-neutral collisions. Electron-ion, electron-

electron and ion-ion collisione are assumed to be so rare as to be negligible
in comparison to electron-neutral and ion-neutral ccllisions. For very

low pressure discharges (pressure below 1lu in mercury) one can also

neglect the ion-neutral collisions. For this pressure the ion-neutral
collision frequency calculated using the experimental mobility values

35

of von Engel is less than one-fifth of the ionizing collision frequency

measured by Klarfeld17

and thus to a reasonably good approximation can
be neglected. Most of the cases discussed below in Chapters II, III, and

IV are generalized to include ion-neutral collisions with calculated
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results showing how the parameters of the discharge vary as the ion-
neutral collision frequency becomes comparable to the ionizatio